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Abstract The resolution of identity (RI) approximation

of second-order Møller–Plesset perturbation (MP2) theory,

termed as RI-MP2, is applied to three-body fragment

molecular orbital (FMO3) method. New implementation of

FMO3 RI-MP2 is developed based on an efficient parallel

RI-MP2 code developed recently in our group. Using this

new implementation, the accuracy and computational time

of FMO3 RI-MP2 calculations are assessed for water

clusters, polyalanines, and proteins. The errors arising from

RI-MP2 are sufficiently small in the FMO3 MP2 calcula-

tions that they give quantitative accuracy for practical

chemical applications. Considerable time savings are

attained in the FMO3 MP2 calculations with the applica-

tion of RI-MP2.

Keywords Three-body fragment molecular orbital

method � Resolution of identity approximation �
Second-order Møller–Plesset perturbation theory �
RI-MP2 � Density fitting MP2

1 Introduction

The fragment molecular orbital (FMO) method [1–10] is an

efficient approach for the rapid ab initio quantum chemical

calculations of large biological molecules and nanomole-

cules. FMO reduces the computational costs considerably

by dividing the target system into fragmented systems and

performing ab initio quantum chemical calculations for

each monomer and dimer (and trimer, if necessary) of

fragments. The three-body FMO method (FMO3) [7–10],

which is based on three-body expansion of total energy, is a

promising tool for treating biological molecules in quan-

titative accuracies.

The dispersion interactions play an important role in bio-

logical and nano-scale molecules. Second-order Møller–

Plesset perturbation (MP2) theory [11–15] is the simplest

electron correlation method at the ab initio level to account

for dispersion interactions, which widely used density func-

tional theory (DFT) methods fail to describe. MP2 is applied

successfully to FMO [10, 16–19]. This opens up many

practical chemical applications of FMO to biological mole-

cules such as protein–ligand bindings [1, 19–21].

Despite the computational efficiency of the FMO scheme,

practical FMO3 MP2 calculations of large biological and

nano-scale molecules are still computationally demanding.

For two-body FMO (FMO2) MP2 calculations, the resolution

of identity (RI) MP2 [22], which is often termed as RI-MP2 or

density fitting MP2, and Cholesky decomposition (CD) MP2

[23] were applied to reduce these computational costs by

introducing the approximation of ERIs. For FMO3, however,

no attempt to apply RI-MP2 or CD MP2 has been performed to

date, and the application is strongly desired. In this article, the

RI-MP2 method is applied to FMO3 calculations. The accu-

racy and computational times of FMO3 with RI-MP2 are

assessed by performing test calculations.

2 Computational details

RI-MP2 [24–30] is based on the RI approximation of ERIs

[31, 32] in which the four-center two-electron repulsion
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integral (ERI) is approximated by the product sum of two-

center and three-center ERIs. RI-MP2 reduces the com-

putational costs as well as the required memory and disk

sizes while maintaining reliable accuracies for practical

chemical applications. Recently, we have developed an

efficient parallel RI-MP2 energy code and tested it with

molecules consisting of up to 300 atoms and 4,000 atomic

orbitals (AOs) [28, 29]. For the FMO3 RI-MP2 calcula-

tions, this code was modified to interface with the FMO

code in the GAMESS-US [33, 34] program.

Using this code, the assessment of FMO3 and FMO2

with RI-MP2 was performed for water clusters (H2O)n

(n = 16, 32, 64), a-helices of alanine a-(Ala)n (n = 10, 20,

40), b-strands of alanine b-(Ala)n (n = 10, 20, 40), and a

trp-cage mini protein (PDB ID: 1L2Y). These molecules

were used for the FMO test calculations in earlier studies

[7, 8, 10, 16]. a-(Ala)n and b-(Ala)n are capped respectively

with the acetyl and—NHCH3 groups at the N-terminus and

C-terminus. (H2O)n contains hydrogen bonds where three-

body effects are significant. Three-body effects are also

significant for a-(Ala)n because they possess large dipole

moments and multiple hydrogen bonds. b-(Ala)n is good

example of a linear polymer for which inter-chain inter-

actions are slight. 1L2Y protein was chosen as an example

of small proteins. Each system was divided into fragments,

with one or two molecules or residues per fragment. In the

following discussion, shorthand notation of FMOn/m is

used, where n and m denote n-body FMO expansion based

on dividing the total system by m molecules (residues) per

fragment.

6-31G* [35, 36] and 6-311G* [37] basis sets were used.

Because the RI-MP2 auxiliary basis sets optimized for

6-31G* and 6-311G* are not available, Weigend’s auxil-

iary basis set for cc-pVTZ [27] was used instead. The

numbers of amino acid residues (Nres), atoms (Natom), AOs

(NAO), and auxiliary basis functions (Naux) are presented in

Table 1. Spherical harmonic Gaussian functions were used

throughout. The core orbitals were frozen. Each system

was computed without symmetry. No electrostatic potential

(ESP) approximation was applied for FMO3 calculations.

ESP approximation was applied for FMO2 calculations.

The same settings for cutoff of distant fragments assessed

in Ref. [10] were used. For the comparison of computa-

tional times of FMO3, FMO2, and full RI-MP2 results,

FMO3, FMO2, and full MP2 calculations were also per-

formed using the efficient parallel semi-direct MP2 code

developed in our group [14].

All calculations were performed on 32 nodes of a single-

core processor personal computer (PC) cluster connected with

gigabit Ethernet, where each node has a 3.2 GHz processor

(Pentium 4 640; Intel Corp.), a 4 GB dual-PC3200 DDR2

memory, and a 400 GB SATA2 hard disk with 8 MB cache.

3 Results and discussion

We first investigated the accuracy of RI-MP2 in FMO3

calculations, which is important for practical chemical

applications. The errors of MP2 correlation energy with

FMO3 and FMO2 from results of full MP2 calculations are

presented in Table 2. These results demonstrate that the

errors from RI-MP2 approximation are small enough to

perform practical chemical applications with quantitatively

reliable accuracies. The maximum absolute error of

RI-MP2 is 1.207 mHartree for the FMO3/1 calculations of

b-(Ala)40 with 6-311G*. The RI-MP2 errors for 6-311G*

are larger than those for 6-31G* because the same auxiliary

basis set is used for both cases. To improve the RI-MP2

errors for 6-311G* more extended and optimized auxiliary

basis functions are required.

For molecules such as (H2O)n and a-(Ala)n, which have

large dipole moments and multiple hydrogen bonds,

FMO3/2 is important to obtain the quantitative accurate

results. For example, the error of FMO3/2 RI-MP2/6-31G*

calculation of a-(Ala)40 is -0.915 mH while the errors of

FMO3/1 RI-MP2/6-31G* and FMO2/2 RI-MP2/6-31G*

are -4.511 and -1.531, respectively. Therefore, the

application of RI-MP2 to FMO3/2 is essential and robust

tool for the practical calculations because of the small

errors from the RI-MP2 approximation.

We next investigate the computational speed of FMO3

RI-MP2. Results of the wall-clock time for RI-MP2 and

Table 1 Number of amino acid

residues (Nres), atoms (Natom),

AOs (NAO), and auxiliary basis

functions (Naux) for test

molecules

a The cc-pVTZ auxiliary basis

set was used for RI-MP2

calculations

Molecule Nres Natom NAO Naux
a

6-31G* 6-311G*

(H2O)16 48 288 384 2,256

(H2O)32 96 576 768 4,512

(H2O)64 192 1,152 1,536 9,024

(Ala)10 10 112 884 1,161 6,165

(Ala)20 20 212 1,684 2,211 11,715

(Ala)40 40 412 3,284 4,311 22,815

1L2Y 20 304 2,456 3,222 16,974
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MP2 calculations with FMO3, FMO2, and full (non-FMO)

are presented in Table 3. The application of RI-MP2

always hastened calculations. In fact, 1.4–14.1 times of

acceleration is achieved for FMO3 calculations. The wall-

clock times for FMO3/2 RI-MP2 calculations are less than

those for FMO3/1 MP2 calculations except for the calcu-

lations of 1L2Y with 6-31G*. Considerable reduction of

computational time was accomplished for FMO3/2 calcu-

lation of 1L2Y protein with 6-31G*: FMO3/2 RI-MP2

required 8.2 h while FMO3/2 MP2 required 23.9 h. The

FMO3 MP2 calculations of large proteins are considerably

time consuming, but the RI-MP2 method is a promising

tool for the practical chemical applications of FMO3 with

reasonable computational costs.

It is also notable that the results of FMO RI-MP2 scales

almost linearly with the size of a-(Ala)n and b-(Ala)n

whereas the those of full RI-MP2 do not scale linearly. For

small molecules such as a-(Ala)10 and b-(Ala)10, the results

of the wall-clock time of full RI-MP2 calculations are

comparable with those of FMO3/2 RI-MP2. However, the

results of FMO3/2 RI-MP2 of large molecules such as

a-(Ala)20, b-(Ala)20, and 1L2Y are more than four times

faster than those of full RI-MP2. This demonstrates the

computational advantage of FMO RI-MP2 over full RI-

MP2.

4 Concluding remarks

In this study, RI-MP2 was applied to speed up FMO3 MP2

calculations. Test calculations demonstrate the quantitative

accuracy and computational efficiency of application of

RI-MP2 to FMO3. The maximum absolute error of FMO3

RI-MP2 is at most 1.207 mHartree for every molecule

tested in this study. Considerable reductions of computa-

tional times were observed in FMO3 calculations by the

application of RI-MP2. Especially, FMO3/2 RI-MP2/6-31G*

calculation of 1L2Y protein was finished within 8.2 h

whereas FMO3/2 MP2/6-31G* took 23.9 h.
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Table 2 MP2 correlation energy errors (mHartree) for FMO3/m and FMO2/m (m = 1, 2) calculations from full MP2 results (Hartree)

Molecules FMO2/1 FMO2/2 FMO3/1 FMO3/2 Full

MP2 RI-MP2 MP2 RI-MP2 MP2 RI-MP2 MP2 RI-MP2 MP2

6-31G*

(H2O)16 -1.290 -1.278 -0.724 -0.710 0.022 0.044 0.020 0.038 -3.005 613a

(H2O)32 -2.520 -2.505 -1.984 -1.961 0.098 0.151 -0.085 -0.048 -6.025 657a

(H2O)64 -4.719 -4.700 -2.001 -1.966 c c 0.171 0.248 -12.080 094a

a-(Ala)10 1.037 1.097 -0.305 -0.235 -0.628 -0.550 -0.026 0.046 -7.944 869a

a-(Ala)20 1.710 1.814 -0.824 -0.696 -1.924 -1.772 -0.339 -0.204 -15.175 683a

a-(Ala)40 3.275 3.469 -1.777 -1.531 -4.810 -4.511 -1.175 -0.915 -29.634 999a

b-(Ala)10 0.027 0.110 0.200 0.285 -0.081 0.005 0.013 0.098 -7.891 064a

b-(Ala)20 0.471 0.626 0.621 0.782 -0.157 0.004 0.051 0.211 -15.066 664a

b-(Ala)40 1.407 1.706 1.493 1.804 -0.303 0.009 0.130 0.441 -29.417 902a

1L2Y 2.564 2.760 3.325 3.540 -1.811 -1.574 -0.164 0.060 -22.051 981

6-311G*

(H2O)16 -5.983 -5.733 -3.348 -3.093 0.941 1.208 0.523 0.784 -3.306 166a

(H2O)32 -14.190 -13.700 -8.061 -7.558 3.777 4.326 1.312 1.835 -6.628 391a

(H2O)64 -33.167 -32.207 -17.019 -16.030 c c 5.031 6.089 -13.288 258a

a-(Ala)10 -17.877 -17.589 -4.073 -3.782 -4.807 -4.511 -0.066 0.224 -8.551 858a

a-(Ala)20 -42.920 -42.380 -11.519 -10.976 -12.485 -11.925 -0.378 0.165 -16.332 256a

a-(Ala)40 -93.743 -92.695 -25.853 -24.803 -27.253 -26.166 0.000b 1.048 (-31.891 538)b

b-(Ala)10 -8.324 -7.994 0.348 0.676 -0.395 -0.067 0.036 0.364 -8.494 006a

b-(Ala)20 -18.027 -17.401 1.052 1.673 -0.855 -0.234 0.143 0.763 -16.217 459a

b-(Ala)40 -37.742 -36.525 2.131 3.337 -2.127 -0.920 0.000b 1.206 (-31.664 037)b

a From Ref. [10]
b FMO3/2 results are taken as the reference
c FMO3 Hartree-Fock self-consistent field (SCF) calculations were not converged
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Super Computing Project of the MEXT. Some preliminary calcula-

tions were performed at the Research Center for Computational

Science, Okazaki, Japan.
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